5  Case studies

5.1 Fitness pricing

In this chapter we’re going to build this Fitness pricing table I found online. It’s not really a data table but it’s a fun exercise to build this.

Fitness Pricing Table
Standard Popular Golden Ultimate
$15/month $25/month $35/month $50/month
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
Book now Book now Book now Book now
Design/Inspiration: @supacode | {gt} Remake: @rappa753

Notice that I’ve even added a little interactive element. You can hover over the booking button. And clicking it redirects you to a certain web page. To get started, let us define the data we need.

library(tidyverse)
library(gt)
levels <- c('Standard', 'Popular', 'Golden', 'Ultimate')
prices <- c(15, 25, 35, 50)
names(prices) <- levels
prices
## Standard  Popular   Golden Ultimate 
##       15       25       35       50

features <- c('Beginner Classes', 'Training Overview', 'Personal Training', 'Olympic Weightlifting', 'Foundation Training')

dat <- tibble(
  level = levels,
  monthly_price = prices[levels],
  features = list(features[1], features[1:2], features[1:3], features),
  booking_link = 'https://www.youtube.com/watch?v=dQw4w9WgXcQ'
) |>
  unnest(features) |>
  select(level, features)
dat
## # A tibble: 11 × 2
##    level    features             
##    <chr>    <chr>                
##  1 Standard Beginner Classes     
##  2 Popular  Beginner Classes     
##  3 Popular  Training Overview    
##  4 Golden   Beginner Classes     
##  5 Golden   Training Overview    
##  6 Golden   Personal Training    
##  7 Ultimate Beginner Classes     
##  8 Ultimate Training Overview    
##  9 Ultimate Personal Training    
## 10 Ultimate Olympic Weightlifting
## 11 Ultimate Foundation Training

level_colors <- c(
  Standard = "#c40d53",
  Popular = "#26559b",
  Golden = "#f90",
  Ultimate =  "#0d833e"
)
level_colors
##  Standard   Popular    Golden  Ultimate 
## "#c40d53" "#26559b"    "#f90" "#0d833e"

5.1.1 Feature tables

From this we can create a table for the features of a single tier, e.g. the “Popular” tier. First, we need to create the data set for this. To do so, we’re going to proceed as follows:

  1. Filter dat so that we have only the features of our current tier
  2. Add a new column in_level and set it to true (since all the filtered features are in the tier)
  3. Expand the tibble so that the other features are also present in the data set (with in_level false)
level <- 'Popular'
dat |>
    ## We use !! here so that this filter actually filters
    filter(level == !!level) |>
    mutate(in_level = TRUE)  |>
    complete(
      expand(dat, features),
      fill = list(in_level = FALSE, level = 'Popular')
    )
## # A tibble: 5 × 3
##   features              level   in_level
##   <chr>                 <chr>   <lgl>   
## 1 Beginner Classes      Popular TRUE    
## 2 Foundation Training   Popular FALSE   
## 3 Olympic Weightlifting Popular FALSE   
## 4 Personal Training     Popular FALSE   
## 5 Training Overview     Popular TRUE

Next, we can throw away the level column and sort the rows by the features (which we saved in the vector features).

level <- 'Popular'
dat |>
    ## We use !! here so that this filter actually filters
    filter(level == !!level) |>
    mutate(in_level = TRUE)  |>
    complete(
      expand(dat, features),
      fill = list(in_level = FALSE, level = 'Popular')
    ) |>
    select(in_level, features) |> 
    arrange(features = fct_relevel(features, !!features)) 
## # A tibble: 5 × 2
##   in_level features             
##   <lgl>    <chr>                
## 1 TRUE     Beginner Classes     
## 2 TRUE     Training Overview    
## 3 FALSE    Personal Training    
## 4 FALSE    Olympic Weightlifting
## 5 FALSE    Foundation Training

Finally, we turn the column in_level into fontawesome icons. The colors of these icons are taken from our vector level_colors.

level_data <- dat |>
    ## We use !! here so that this filter actually filters
    filter(level == !!level) |>
    mutate(in_level = TRUE)  |>
    complete(
      expand(dat, features),
      fill = list(in_level = FALSE)
    ) |>
    select(in_level, features) |> 
    arrange(features = fct_relevel(features, !!features)) |> 
    mutate(
      in_level = ifelse(
        in_level,
        fontawesome::fa('check', fill = level_colors[level]) |> html(),
        fontawesome::fa('xmark', fill = level_colors[level]) |> html()
      )
    )
level_data
## # A tibble: 5 × 2
##   in_level                                                              features
##   <chr>                                                                 <chr>   
## 1 "<svg aria-hidden=\"true\" role=\"img\" viewBox=\"0 0 448 512\" styl… Beginne…
## 2 "<svg aria-hidden=\"true\" role=\"img\" viewBox=\"0 0 448 512\" styl… Trainin…
## 3 "<svg aria-hidden=\"true\" role=\"img\" viewBox=\"0 0 384 512\" styl… Persona…
## 4 "<svg aria-hidden=\"true\" role=\"img\" viewBox=\"0 0 384 512\" styl… Olympic…
## 5 "<svg aria-hidden=\"true\" role=\"img\" viewBox=\"0 0 384 512\" styl… Foundat…

Sweet. Now we can turn this into a {gt} table. We have to use fmt_markdown() on our in_leel column so that the icons are actually displayed as icons. While we’re at it, we can style the table a tiny bit. This includes getting rid of the column labels.

level_data |> 
    gt() |>
    fmt_markdown(columns = 'in_level') |>
    cols_width(in_level ~ px(25), everything() ~ px(175)) |>
    tab_options(
      column_labels.hidden = TRUE,
      table.font.names = 'Source Sans Pro',
      table_body.border.top.style = 'none',
      table.border.top.style = 'none',
      table_body.border.bottom.style = 'none',
      table.border.bottom.style = 'none',
      table_body.hlines.style = 'none',
    ) 
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training

Alright, this looks already pretty good. We’ll get rid of the grid lines once we have assembled the full table. Of course, we have to create this table for all tiers. So let’s wrap this into a function.

Code
tier_feature_table <- function(level) {
  level_data <- dat |>
    ## We use !! here so that this filter actually filters
    filter(level == !!level) |>
    mutate(in_level = TRUE)  |>
    complete(
      expand(dat, features),
      fill = list(in_level = FALSE)
    ) |>
    select(in_level, features) |> 
    arrange(features = fct_relevel(features, !!features)) |> 
    mutate(
      in_level = ifelse(
        in_level,
        fontawesome::fa('check', fill = level_colors[level]) |> html(),
        fontawesome::fa('xmark', fill = level_colors[level]) |> html()
      )
    )
  
  level_data |> 
    gt() |>
    fmt_markdown(columns = 'in_level') |>
    cols_width(in_level ~ px(25), everything() ~ px(175)) |>
    tab_options(
      column_labels.hidden = TRUE,
      table.font.names = 'Source Sans Pro',
      table_body.border.top.style = 'none',
      table.border.top.style = 'none',
      table_body.border.bottom.style = 'none',
      table.border.bottom.style = 'none',
      table_body.hlines.style = 'none',
    ) 
}
tier_feature_table('Standard')
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
tier_feature_table('Popular')
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
tier_feature_table('Golden')
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
tier_feature_table('Ultimate')
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training

And we can save all tables as HTML in a tibble. For such occasions, {gt} has the function as_raw_html().

tables_tib <- tibble(
  level = levels,
  table = map_chr(levels, ~as_raw_html(tier_feature_table(.)))
) |>
  pivot_wider(names_from = level, values_from = table)
tables_tib
## # A tibble: 1 × 4
##   Standard                                               Popular Golden Ultimate
##   <chr>                                                  <chr>   <chr>  <chr>   
## 1 "<div id=\"cgzirftbov\" style=\"padding-left:0px;padd… "<div … "<div… "<div i…

5.1.3 Assembling the tables

Now we can put everything together. And in order to get white space between the tiers, we insert a few empty dummy columns.

levels_text_size <- px(30)

unstyled_fitness_table <- bind_rows(price_tib, tables_tib, url_tib) |>
  mutate(dummy1 = '', .after = 1) |>
  mutate(dummy2 = '', .after = 3) |>
  mutate(dummy3 = '', .after = 5) |>
  gt(id = 'fitness_table') |>
  fmt_markdown(columns = everything()) |>
  cols_align(align = 'center') |>
  cols_label(
    dummy1 = '',
    dummy2 = '',
    dummy3 = ''
  ) |>
  cols_width(
    dummy1 ~ px(15),
    dummy2 ~ px(15),
    dummy3 ~ px(15)
  )  |>
  tab_header(
    title = 'Fitness Pricing Table'
  ) |>
  tab_footnote(
    footnote = 'Design/Inspiration: @supacode | {gt} Remake: @rappa753',
    placement = 'right'
  )
unstyled_fitness_table
Fitness Pricing Table
Standard Popular Golden Ultimate
$15/month $25/month $35/month $50/month
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
Book now Book now Book now Book now
Design/Inspiration: @supacode | {gt} Remake: @rappa753

And the rest is “just” a series of tab_style() calls plus tab_options() and a bit of custom CSS.

Code
unstyled_fitness_table |>
  tab_style(
    style = list(
      cell_fill(color = level_colors['Standard']),
      cell_text(color = 'white', weight = 'bold')
    ),
    locations = list(
      cells_body(columns = 'Standard', rows = 1),
      cells_column_labels(column = 'Standard')
    )
  ) |>
  tab_style(
    style = list(
      cell_fill(color = level_colors['Popular']),
      cell_text(color = 'white', weight = 'bold')
    ),
    locations = list(
      cells_body(columns = 'Popular', rows = 1),
      cells_column_labels(column = 'Popular')
    )
  ) |>
  tab_style(
    style = list(
      cell_fill(color = level_colors['Golden']),
      cell_text(color = 'white', weight = 'bold')
    ),
    locations = list(
      cells_body(columns = 'Golden', rows = 1),
      cells_column_labels(column = 'Golden')
    )
  ) |>
  tab_style(
    style = list(
      cell_fill(color = level_colors['Ultimate']),
      cell_text(color = 'white', weight = 'bold')
    ),
    locations = list(
      cells_body(columns = 'Ultimate', rows = 1),
      cells_column_labels(column = 'Ultimate')
    )
  ) |>
  tab_style(
    style = cell_text(size = levels_text_size),
    locations = cells_column_labels()
  ) |>
  tab_style(
    style = list(cell_fill(color = 'white')),
    locations = list(
      cells_body(columns = contains('dummy')),
      cells_column_labels(columns = contains('dummy'))
    )
  ) |>
  tab_style(
    style = cell_borders(sides = 'bottom', color = '#D3D3D3'),
    locations = cells_body(rows = 3, columns = c(1, 3, 5, 7))
  ) |>
  tab_options(
    table_body.border.top.style = 'none',
    table.border.top.style = 'none',
    table_body.border.bottom.style = 'none',
    table.border.bottom.style = 'none',
    table_body.hlines.style = 'none',
    table_body.vlines.style = 'solid',
    column_labels.border.top.style = 'none',
    column_labels.border.bottom.style = 'none',
    column_labels.border.lr.style = 'solid', # not working, set in css
    column_labels.border.lr.width = px(1),
    column_labels.padding = px(1),
    data_row.padding = px(2),
    table.font.names = 'Source Sans Pro',
    heading.title.font.size = px(45),
    heading.padding = px(10),
    heading.border.bottom.style = 'none'
  ) |>
  opt_css(
    '#fitness_table .gt_footnote {
      text-align: right; padding-top: 5px;
    }

    #fitness_table .gt_title {
      font-family:"Oleo Script";
    }

    #fitness_table .gt_col_heading {
      border-left-style:solid;
      border-right-style:solid;
    }
    
    #fitness_table thead, tbody, tfoot, tr, td, th {
      border-color: inherit;
      border-style: solid;
      border-width: 0;
    }
    
    #fitness_table a {
    &:hover {
        transform: translateY(-3px);
        box-shadow: 0 5px 5px rgba(0, 0, 0, 0.4);
      }
      &:active {
        box-shadow: inset 0 -3px 5px rgba(0, 0, 0, 0.4);
      }
    }

    '
  )
Fitness Pricing Table
Standard Popular Golden Ultimate
$15/month $25/month $35/month $50/month
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
Beginner Classes
Training Overview
Personal Training
Olympic Weightlifting
Foundation Training
Book now Book now Book now Book now
Design/Inspiration: @supacode | {gt} Remake: @rappa753

5.2 NYT bestseller

This one is a recreation of an awesome table Tanya Shapiro made with {ggplot2}. It is a huge table, so you’ll probably need to look at this on a large screen. But just to be safe. Here’s a screenshot of the table as well.

The New York Times Best Selling Authors
Top authors by decade. Ranking based on number of weeks author appeared on list. Sparkline depicts total weeks
by year (counts multiple books). Top performing book included beneath each author’s name. Data from Post45 Data Collective.

1960s
1 176 WEEKS ON THE LIST
Allen Drury
Advise And Consent
2 158 WEEKS ON THE LIST
John O’Hara
Elizabeth Appleton
3 157 WEEKS ON THE LIST
Taylor Caldwell
Testimony Of Two Men
4 136 WEEKS ON THE LIST
Irving Wallace
The Man
5 135 WEEKS ON THE LIST
Leon Uris
Topaz
1970s
1 172 WEEKS ON THE LIST
Richard Bach
Illusions
2 125 WEEKS ON THE LIST
Robert Ludlum
The Matarese Circle
3 123 WEEKS ON THE LIST
Herman Wouk
The Winds Of War
4 119 WEEKS ON THE LIST
Agatha Christie
Curtain
5 119 WEEKS ON THE LIST
Frederick Forsyth
The Odessa File
1980s
1 336 WEEKS ON THE LIST
Stephen King
Firestarter
2 271 WEEKS ON THE LIST
Danielle Steel
Changes
3 205 WEEKS ON THE LIST
James A. Michener
The Covenant
4 176 WEEKS ON THE LIST
Tom Clancy
Red Storm Rising
5 170 WEEKS ON THE LIST
Robert Ludlum
The Parsifal Mosaic
1990s
1 311 WEEKS ON THE LIST
Danielle Steel
The Gift
2 307 WEEKS ON THE LIST
John Grisham
The Pelican Brief
3 244 WEEKS ON THE LIST
Stephen King
The Stand
4 212 WEEKS ON THE LIST
Robert Waller
The Bridges Of Madison County
5 192 WEEKS ON THE LIST
Mary Higgins Clark
Loves Music, Loves To Dance
2000s
1 232 WEEKS ON THE LIST
John Grisham
Skipping Christmas
2 218 WEEKS ON THE LIST
Dan Brown
The Da Vinci Code
3 200 WEEKS ON THE LIST
Danielle Steel
The House On Hope Street
4 178 WEEKS ON THE LIST
James Patterson
Cross
5 176 WEEKS ON THE LIST
Nicholas Sparks
A Bend In The Road
2010s
1 216 WEEKS ON THE LIST
John Grisham
Sycamore Row
2 207 WEEKS ON THE LIST
David Baldacci
The Escape
3 157 WEEKS ON THE LIST
Danielle Steel
The Mistress
4 157 WEEKS ON THE LIST
Stephen King
11/22/63
5 132 WEEKS ON THE LIST
Anthony Doerr
All The Light We Cannot See
{ggplot2} Original: @tanya_shapiro | {gt} recreation: @rappa753

5.2.1 Data Preparation

The first thing we need to do is get the data. This requires a bit of data wrangling on the underlying TidyTuesdaty data set. The following code finds the top 5 authors by decade, their best book and the data for the sparkline plot.

# Book finder helper function
find_best_book <- function(decade, author) {
  best_books <- nyt_dat |> 
    filter(decade == !!decade, author == !!author) |> 
    count(title, sort = TRUE)
  
  best_books[[1, 'title']] |> str_to_title()
}

# Sparkline helper function 
find_number_of_weeks_per_year <- function(decade, author){
  nyt_dat |> 
    filter(decade == !!decade, author == !!author) |> 
    count(year, name = 'weeks') |> 
    complete(tibble(year = decade:(decade + 9)), fill = list(weeks = 0)) |> 
    arrange(year)  |> 
    pull(weeks)
}

# Data from the TidyTuesday repo
nyt_dat <- readr::read_tsv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2022/2022-05-10/nyt_full.tsv') |> 
  mutate(decade = (year %/% 10) * 10) 

# Find top 5 authors
top5_authors_by_decade <- nyt_dat |> 
  filter(between(year, 1960, 2019)) |> 
  count(author, decade, sort = T, name = 'weeks') |> 
  group_by(decade) |> 
  slice_max(weeks, n = 5) |> 
  ungroup()


# Find their best book and the info for the sparlines
top5_authors_and_book_by_decade <- top5_authors_by_decade |> 
  mutate(
    best_book = map2_chr(decade, author, find_best_book),
    sparkline_weeks = map2(decade, author, find_number_of_weeks_per_year)
  )
top5_authors_and_book_by_decade
## # A tibble: 30 × 5
##    author            decade weeks best_book            sparkline_weeks
##    <chr>              <dbl> <int> <chr>                <list>         
##  1 Allen Drury         1960   176 Advise And Consent   <int [10]>     
##  2 John O'Hara         1960   158 Elizabeth Appleton   <int [10]>     
##  3 Taylor Caldwell     1960   157 Testimony Of Two Men <int [10]>     
##  4 Irving Wallace      1960   136 The Man              <int [10]>     
##  5 Leon Uris           1960   135 Topaz                <int [10]>     
##  6 Richard Bach        1970   172 Illusions            <int [10]>     
##  7 Robert Ludlum       1970   125 The Matarese Circle  <int [10]>     
##  8 Herman Wouk         1970   123 The Winds Of War     <int [10]>     
##  9 Agatha Christie     1970   119 Curtain              <int [10]>     
## 10 Frederick Forsyth   1970   119 The Odessa File      <int [10]>     
## # ℹ 20 more rows

Next, we find images of the authors online and save them in a tibble image_links. This tibble can then be joined with top5_authors_and_book_by_decade.

image_links <- tibble(
  author = top5_authors_and_book_by_decade |> pull(author) |> unique(),
  img = c(
    'https://images.gr-assets.com/authors/1327446818p8/77616.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/thumb/c/c5/John_O%27Hara_cph.3b08576.jpg/1024px-John_O%27Hara_cph.3b08576.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/8/88/Taylor_caldwell_a.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/thumb/0/0c/Irving_Wallace%2C_1972.jpg/330px-Irving_Wallace%2C_1972.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/d/d6/Leon_Uris_%28cropped%29.jpg',
    'https://images-na.ssl-images-amazon.com/images/I/41RMdx8BJHL.__01_SX120_CR0,0,120,120__.jpg',
    'https://upload.wikimedia.org/wikipedia/en/a/a2/Robert_Ludlum_%281927-2001%29.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/thumb/4/49/Herman_Wouk_%28cropped%29.jpg/330px-Herman_Wouk_%28cropped%29.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/thumb/c/cf/Agatha_Christie.png/330px-Agatha_Christie.png',
    'https://upload.wikimedia.org/wikipedia/commons/thumb/9/9d/Frederick_Forsyth_-_01.jpg/375px-Frederick_Forsyth_-_01.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/thumb/e/e3/Stephen_King%2C_Comicon.jpg/330px-Stephen_King%2C_Comicon.jpg',
    'https://images1.penguinrandomhouse.com/author/29599',
    'https://upload.wikimedia.org/wikipedia/commons/thumb/d/dc/James_Albert_Michener_%C2%B7_DN-SC-92-05368.JPEG/330px-James_Albert_Michener_%C2%B7_DN-SC-92-05368.JPEG',
    'https://upload.wikimedia.org/wikipedia/commons/thumb/9/98/Tom_Clancy_at_Burns_Library_cropped.jpg/330px-Tom_Clancy_at_Burns_Library_cropped.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Grisham_John_by_C_Harrison_.jpg/300px-Grisham_John_by_C_Harrison_.jpg',
    'https://upload.wikimedia.org/wikipedia/en/7/70/Robert_James_Waller.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Mary_Higgins_Clark_at_the_Mazza_Museum.jpg/330px-Mary_Higgins_Clark_at_the_Mazza_Museum.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/thumb/8/8b/Dan_Brown_bookjacket_cropped.jpg/330px-Dan_Brown_bookjacket_cropped.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/1/1d/James_Patterson.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/a/af/Nicholas-Sparks-Autograph-1-4-06.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/thumb/3/3d/David_Baldacci_-_2015_National_Book_Festival_%286%29.jpg/330px-David_Baldacci_-_2015_National_Book_Festival_%286%29.jpg',
    'https://upload.wikimedia.org/wikipedia/commons/thumb/6/61/Anthony_Doerr_%282015%29.jpg/330px-Anthony_Doerr_%282015%29.jpg'
  )
)

full_dat <- top5_authors_and_book_by_decade |> 
  left_join(image_links)

5.2.2 Sparklines

Next, we can create the sparklines for each table entry. This requires two steps.

  1. Find the highest number per year of how many times an author appeared in the bestseller list. This number can be higher than 52 due to multiple books. Knowing this number ensures that all of our sparklines are using the same y-axis.

  2. Build a function that transforms the vector of weeks per year into a ggplot. Keep in mind that the sizes need to be large in the ggplot so that they are legible in the small table image later on.

# can be higher than 52 bc of multiple books
highest_week_count_per_year <- full_dat |> 
  pull(sparkline_weeks) |> 
  map_dbl(max) |>
  max()

create_sparkline <- function(sparkline) {
  ggplot() +
    geom_line(
      mapping = aes(x = seq_along(sparkline), y = sparkline),
      color = 'white',
      linewidth = 3
    ) +
    annotate(
      'text',
      x = c(1, 10),
      y = sparkline[c(1, 10)],
      label = sparkline[c(1, 10)],
      color = 'white',
      hjust = c(1.2, -0.2),
      size = 16
    ) +
    coord_cartesian(xlim = c(-5, 15), ylim = c(0, highest_week_count_per_year)) +
    theme_void() +
    theme(plot.background = element_rect(fill = 'black'))
}
create_sparkline(25 * runif(10))

5.2.3 Decade table

Ok great, we have a function for sparklines now. Now, let us create the table for a singledecade. For that we will need three things.

  1. A function that maps the number of weeks to a color (for the little colored circles)

  2. A function that creates the HTML code for the small colored circles

  3. A function that stacks the following information as we’ve seen in the intial table using HTML:

    • number of weeks
    • author name
    • author’s best book
    • HTML code of circle

These three functions look like this.

# Maps number of weeks to colors
map2color <- function(x, pal = rev(RColorBrewer::brewer.pal(11, 'Spectral')), limits=NULL){
    if(is.null(limits)) limits <- range(x)
    pal[findInterval(x,seq(limits[1],limits[2],length.out=length(pal)+1), all.inside=TRUE)]
}

# Creates colored circle which is really just a styled <span> tag
create_point_span <- function(color, size) {
  glue::glue(
    '<span style="height: {size}em;width: {size}em;background-color: {color};border-radius: 50%;margin-top:4px;display:inline-block;margin-left:2px;"></span>'
  )
}

# Formats the author infos via styled <span> tags and line breaks <br>
format_text <- function(weeks, author, best_book, colors) {
  glue::glue(
    '<span style = "color:white;font-weight:lighter;font-size:12pt;">{str_to_upper(weeks)} WEEKS ON THE LIST</span> {create_point_span(colors, 0.75)}',
    '<br>',
    '<span style = "color:white;font-weight:bold;font-size:22pt;">{author}</span>',
    '<br>',
    '<span style = "color:white;font-size:12pt;">{best_book}</span>'
  )
}

Now we can apply these functions to get our data set ready for gt(). Here, we will use the data of the 1960s.

decade <- 1960
decade_data <- full_dat |> 
  # Create colors before filtering (for consistent colors across decades)
  mutate(color = map2color(weeks)) |> 
  filter(decade == !!decade) |> 
  mutate(
    # Shorten long names
    author = if_else(
      author == 'Robert James Waller', 
      'Robert Waller', 
      author
    ),
    # Add ranking (authors are already sorted)
    rank = 1:5,
    # Format decade label
    decade = paste0(decade, 's'),
    # create stacked author info
    joined_text = pmap_chr(
      .l = list(weeks, author, best_book, color), 
      format_text
    )
  ) |> 
  select(rank, decade, joined_text, sparkline_weeks, img)

decade_data
## # A tibble: 5 × 5
##    rank decade joined_text                                 sparkline_weeks img  
##   <int> <chr>  <chr>                                       <list>          <chr>
## 1     1 1960s  "<span style = \"color:white;font-weight:l… <int [10]>      http…
## 2     2 1960s  "<span style = \"color:white;font-weight:l… <int [10]>      http…
## 3     3 1960s  "<span style = \"color:white;font-weight:l… <int [10]>      http…
## 4     4 1960s  "<span style = \"color:white;font-weight:l… <int [10]>      http…
## 5     5 1960s  "<span style = \"color:white;font-weight:l… <int [10]>      http…

Perfect. We’re ready to pass this to gt(). Once we do that we will

  • Use decade as groupname_col so that the label appears on top
  • Turn image URLs into images
  • Transform the sparkline data into plots
  • Adjust widths so that the texts fit into their column and image are round
  • Format the joined_text column as Markdown (so that the HTML code is rendered)
  • Turn background black so text is legible
img_size <- 75

# Use custom img_circles function from Chapter 2
my_gt_img_circles <- function(gt_tbl, columns, height_px) {
  gt_tbl |>
    gt_img_rows(columns = columns, height = 100) |> 
    text_transform(
      locations = cells_body(columns = columns),
      fn = function(x) {
        css_style <- htmltools::css(
          border_radius = '100%',
          border = '2px solid black',
          overflow = 'hidden',
          height = glue::glue('{height_px}px'),
          width = glue::glue('{height_px}px')
        )
        glue::glue(
          '<div style = "{css_style}">{x}</div>'
        )
      }
    )
}



barely_styled_decade_table <- decade_data |> 
  gt(groupname_col = 'decade') |> 
  my_gt_img_circles(column = 'img', height = img_size) |> 
  text_transform(
    locations = cells_body(columns = sparkline_weeks),
    fn = function(column) {
      map(column, ~c(str_split_1(., pattern = ', '))) |> 
        map(parse_number) |>
        map(create_sparkline) |> 
        # Save images manually bc ggplot_img() seems to lose some imgs
        walk2(1:5, \(x, y) {
          ggsave(
            filename = paste0('imgs/', decade, '_', y, '.png'),
            plot = x,
            device = 'png',
            height = 10,
            width = 10,
            unit = 'cm'
          )
        })
      
      glue::glue(
        '<img src="imgs/{decade}_{seq_along(column)}.png" style="height:75px"></img>'
      )
    }
  ) |> 
  cols_width(
    img ~ px(82), # needs to be a little more than 75px
    joined_text ~ px(300),
    sparkline_weeks ~ px(100)
  ) |> 
  fmt_markdown(columns = c('joined_text')) |> 
  tab_options(table.background.color = 'black')
barely_styled_decade_table
rank joined_text sparkline_weeks img
1960s
1 176 WEEKS ON THE LIST
Allen Drury
Advise And Consent
2 158 WEEKS ON THE LIST
John O’Hara
Elizabeth Appleton
3 157 WEEKS ON THE LIST
Taylor Caldwell
Testimony Of Two Men
4 136 WEEKS ON THE LIST
Irving Wallace
The Man
5 135 WEEKS ON THE LIST
Leon Uris
Topaz

Finally, we apply some more styling and then our decade table is good to go.

barely_styled_decade_table |> 
  tab_style(
    style = cell_text(size = '15pt', weight = 'bold', v_align = 'top'),
    locations = cells_body('rank')
  )  |> 
  tab_style(
    locations = cells_row_groups(),
    style = cell_text(align = 'center')
  ) |> 
  tab_options(
    table.background.color = 'black',
    table.font.color = 'white',
    table.font.names = 'Open Sans',
    column_labels.hidden = TRUE,
    row_group.border.top.style = 'none',
    row_group.border.bottom.style = 'none',
    table.border.bottom.style = 'solid',
    table.border.bottom.width = px(1),
    table.border.top.style = 'none',
    table_body.border.bottom.style = 'none',
    table_body.border.top.style = 'none',
    heading.border.bottom.style = 'none',
    column_labels.border.top.style = 'none',
  ) 
1960s
1 176 WEEKS ON THE LIST
Allen Drury
Advise And Consent
2 158 WEEKS ON THE LIST
John O’Hara
Elizabeth Appleton
3 157 WEEKS ON THE LIST
Taylor Caldwell
Testimony Of Two Men
4 136 WEEKS ON THE LIST
Irving Wallace
The Man
5 135 WEEKS ON THE LIST
Leon Uris
Topaz

Now we know how to create one decade table. Time to wrap the logic into a function. We’ll call it create_decade_table(). Very original, I know.

Code
create_decade_table <- function(decade, img_size = 75) {
  decade_data <- full_dat |> 
    # Create colors before filtering (for consistent colors across decades)
    mutate(color = map2color(weeks)) |> 
    filter(decade == !!decade) |> 
    mutate(
      # Shorten long names
      author = if_else(
        author == 'Robert James Waller', 
        'Robert Waller', 
        author
      ),
      # Add ranking (authors are already sorted)
      rank = 1:5,
      # Format decade label
      decade = paste0(decade, 's'),
      # create stacked author info
      joined_text = pmap_chr(
        .l = list(weeks, author, best_book, color), 
        format_text
      )
    ) |> 
    select(rank, decade, joined_text, sparkline_weeks, img)
  
  barely_styled_decade_table <- decade_data |> 
    gt(groupname_col = 'decade') |> 
    my_gt_img_circles(column = 'img', height = img_size) |> 
    text_transform(
      locations = cells_body(columns = sparkline_weeks),
      fn = function(column) {
      map(column, ~c(str_split_1(., pattern = ', '))) |> 
        map(parse_number) |>
        map(create_sparkline) |> 
        # Save images manually bc ggplot_img() seems to lose some imgs
        walk2(1:5, \(x, y) {
          ggsave(
            filename = paste0('imgs/', decade, '_', y, '.png'),
            plot = x,
            device = 'png',
            height = 10,
            width = 10,
            unit = 'cm'
          )
        })
      
      glue::glue(
        '<img src="imgs/{decade}_{seq_along(column)}.png" style="height:75px"></img>'
      )
    }
    ) |> 
    cols_width(
      img ~ px(82), # needs to be a little more than 75px
      joined_text ~ px(300),
      sparkline_weeks ~ px(100)
    ) |> 
    fmt_markdown(columns = c('joined_text')) |> 
    tab_options(table.background.color = 'black')
  
  barely_styled_decade_table |> 
    tab_style(
      style = cell_text(size = '15pt', weight = 'bold', v_align = 'top'),
      locations = cells_body('rank')
    )  |> 
    tab_style(
      locations = cells_row_groups(),
      style = cell_text(align = 'center')
    ) |> 
    tab_options(
      table.background.color = 'black',
      table.font.color = 'white',
      table.font.names = 'Open Sans',
      column_labels.hidden = TRUE,
      row_group.border.top.style = 'none',
      row_group.border.bottom.style = 'none',
      table.border.bottom.style = 'solid',
      table.border.bottom.width = px(1),
      table.border.top.style = 'none',
      table_body.border.bottom.style = 'none',
      table_body.border.top.style = 'none',
      heading.border.bottom.style = 'none',
      column_labels.border.top.style = 'none',
    ) 
}
create_decade_table(1960)
1960s
1 176 WEEKS ON THE LIST
Allen Drury
Advise And Consent
2 158 WEEKS ON THE LIST
John O’Hara
Elizabeth Appleton
3 157 WEEKS ON THE LIST
Taylor Caldwell
Testimony Of Two Men
4 136 WEEKS ON THE LIST
Irving Wallace
The Man
5 135 WEEKS ON THE LIST
Leon Uris
Topaz
create_decade_table(1970)
1970s
1 172 WEEKS ON THE LIST
Richard Bach
Illusions
2 125 WEEKS ON THE LIST
Robert Ludlum
The Matarese Circle
3 123 WEEKS ON THE LIST
Herman Wouk
The Winds Of War
4 119 WEEKS ON THE LIST
Agatha Christie
Curtain
5 119 WEEKS ON THE LIST
Frederick Forsyth
The Odessa File
create_decade_table(1980)
1980s
1 336 WEEKS ON THE LIST
Stephen King
Firestarter
2 271 WEEKS ON THE LIST
Danielle Steel
Changes
3 205 WEEKS ON THE LIST
James A. Michener
The Covenant
4 176 WEEKS ON THE LIST
Tom Clancy
Red Storm Rising
5 170 WEEKS ON THE LIST
Robert Ludlum
The Parsifal Mosaic
create_decade_table(1990)
1990s
1 311 WEEKS ON THE LIST
Danielle Steel
The Gift
2 307 WEEKS ON THE LIST
John Grisham
The Pelican Brief
3 244 WEEKS ON THE LIST
Stephen King
The Stand
4 212 WEEKS ON THE LIST
Robert Waller
The Bridges Of Madison County
5 192 WEEKS ON THE LIST
Mary Higgins Clark
Loves Music, Loves To Dance
create_decade_table(2000)
2000s
1 232 WEEKS ON THE LIST
John Grisham
Skipping Christmas
2 218 WEEKS ON THE LIST
Dan Brown
The Da Vinci Code
3 200 WEEKS ON THE LIST
Danielle Steel
The House On Hope Street
4 178 WEEKS ON THE LIST
James Patterson
Cross
5 176 WEEKS ON THE LIST
Nicholas Sparks
A Bend In The Road
create_decade_table(2010)
2010s
1 216 WEEKS ON THE LIST
John Grisham
Sycamore Row
2 207 WEEKS ON THE LIST
David Baldacci
The Escape
3 157 WEEKS ON THE LIST
Danielle Steel
The Mistress
4 157 WEEKS ON THE LIST
Stephen King
11/22/63
5 132 WEEKS ON THE LIST
Anthony Doerr
All The Light We Cannot See

5.2.4 Assembling the table

With some functional programming we can collect the HTML code for all tables in one tibble. Then, we can assemble a custom HTML text for the table and create our first table prototype.

# Create tables for each decade and convert them to HTML
raw_tables <- map(seq(1960, 2010, 10), create_decade_table) |> 
  map_chr(as_raw_html)

ordered_tibble <- tibble(
  col1 = raw_tables[c(1, 4)],
  col2 = raw_tables[c(2, 5)],
  col3 = raw_tables[c(3, 6)]
)

## Create custom HTML text for title to use many different styles
title <- paste0(
  "<span style='font-family:Chomsky;font-size:42pt;color:white;'> The New York Times</span>",
  "<span style='font-family:opensans;font-size:24pt;color:white;'> **Best Selling Authors**</span>",
  "<br><span style='font-family:opensans;font-size:18pt;color:#D6D6D6'>Top authors by decade. Ranking based on number of weeks author appeared on list. Sparkline depicts total weeks<br>by year (counts multiple books). Top performing book included beneath each author's name. Data from Post45 Data Collective.</span><br>"
)

ordered_tibble  |> 
  gt(id = 'bestseller_collected') |> 
  fmt_markdown(columns = everything()) |> 
  tab_header(title = md(title))  |> 
  tab_footnote(
    html(glue::glue(
      '{ggplot2} Original: <<fontawesome::fa("twitter")>>@tanya_shapiro | 
      {gt} recreation: <<fontawesome::fa("twitter")>>@rappa753',
      .open = "<<", .close = ">>"
    ))
  ) |> 
  cols_width(
    col1 ~ px(600),
    col2 ~ px(600),
    col3 ~ px(600)
  ) |> 
  tab_style(
    locations = cells_body(rows = 1),
    style = cell_borders(style = 'hidden')
  ) |> 
  tab_options(table.background.color = 'black')
The New York Times Best Selling Authors
Top authors by decade. Ranking based on number of weeks author appeared on list. Sparkline depicts total weeks
by year (counts multiple books). Top performing book included beneath each author’s name. Data from Post45 Data Collective.

col1 col2 col3
1960s
1 176 WEEKS ON THE LIST
Allen Drury
Advise And Consent
2 158 WEEKS ON THE LIST
John O’Hara
Elizabeth Appleton
3 157 WEEKS ON THE LIST
Taylor Caldwell
Testimony Of Two Men
4 136 WEEKS ON THE LIST
Irving Wallace
The Man
5 135 WEEKS ON THE LIST
Leon Uris
Topaz
1970s
1 172 WEEKS ON THE LIST
Richard Bach
Illusions
2 125 WEEKS ON THE LIST
Robert Ludlum
The Matarese Circle
3 123 WEEKS ON THE LIST
Herman Wouk
The Winds Of War
4 119 WEEKS ON THE LIST
Agatha Christie
Curtain
5 119 WEEKS ON THE LIST
Frederick Forsyth
The Odessa File
1980s
1 336 WEEKS ON THE LIST
Stephen King
Firestarter
2 271 WEEKS ON THE LIST
Danielle Steel
Changes
3 205 WEEKS ON THE LIST
James A. Michener
The Covenant
4 176 WEEKS ON THE LIST
Tom Clancy
Red Storm Rising
5 170 WEEKS ON THE LIST
Robert Ludlum
The Parsifal Mosaic
1990s
1 311 WEEKS ON THE LIST
Danielle Steel
The Gift
2 307 WEEKS ON THE LIST
John Grisham
The Pelican Brief
3 244 WEEKS ON THE LIST
Stephen King
The Stand
4 212 WEEKS ON THE LIST
Robert Waller
The Bridges Of Madison County
5 192 WEEKS ON THE LIST
Mary Higgins Clark
Loves Music, Loves To Dance
2000s
1 232 WEEKS ON THE LIST
John Grisham
Skipping Christmas
2 218 WEEKS ON THE LIST
Dan Brown
The Da Vinci Code
3 200 WEEKS ON THE LIST
Danielle Steel
The House On Hope Street
4 178 WEEKS ON THE LIST
James Patterson
Cross
5 176 WEEKS ON THE LIST
Nicholas Sparks
A Bend In The Road
2010s
1 216 WEEKS ON THE LIST
John Grisham
Sycamore Row
2 207 WEEKS ON THE LIST
David Baldacci
The Escape
3 157 WEEKS ON THE LIST
Danielle Steel
The Mistress
4 157 WEEKS ON THE LIST
Stephen King
11/22/63
5 132 WEEKS ON THE LIST
Anthony Doerr
All The Light We Cannot See
{ggplot2} Original: @tanya_shapiro | {gt} recreation: @rappa753

Of course we still have some styling to do. So let’s finish off with this.

ordered_tibble  |> 
  gt(id = 'bestseller_collected_styled') |> 
  fmt_markdown(columns = everything()) |> 
  tab_header(title = md(title))  |> 
  tab_footnote(
    html(glue::glue(
      '{ggplot2} Original: <<fontawesome::fa("twitter")>>@tanya_shapiro | 
      {gt} recreation: <<fontawesome::fa("twitter")>>@rappa753',
      .open = "<<", .close = ">>"
    ))
  ) |> 
  cols_width(
    col1 ~ px(600),
    col2 ~ px(600),
    col3 ~ px(600)
  ) |> 
  tab_style(
    locations = cells_body(rows = 1),
    style = cell_borders(style = 'hidden')
  ) |> 
  tab_options(table.background.color = 'black') |> 
  tab_style(
    locations = cells_body(rows = 1),
    style = cell_borders(style = 'hidden')
  ) |> 
  tab_options(
    table.background.color = 'black',
    column_labels.hidden = TRUE,
    table_body.border.bottom.style = 'none',
  ) |> 
  opt_css(
    '#bestseller_collected_styled .gt_footnote {
      text-align: right; 
      padding-top: 20px;
      padding-bottom:5px;
      font-family:"Open Sans";
      font-size:10pt;
      font-weight:bold;
    }
    
    #bestseller_collected_styled .gt_row {
      border-top-color: grey;
      border-bottom-color: grey;
    }
    
    #bestseller_collected_styled thead, tbody, tfoot, tr, td, th {
      border-color: inherit;
      border-style: solid;
      border-width: 0;
    }
    
    #bestseller_collected_styled thead, tbody, tfoot, tr, td, th {
      border-color: inherit;
      border-style: solid;
      border-width: 0;
    }
    
    div#bestseller_collected_styled {line-height:1.1;}
    '
  ) 
The New York Times Best Selling Authors
Top authors by decade. Ranking based on number of weeks author appeared on list. Sparkline depicts total weeks
by year (counts multiple books). Top performing book included beneath each author’s name. Data from Post45 Data Collective.

1960s
1 176 WEEKS ON THE LIST
Allen Drury
Advise And Consent
2 158 WEEKS ON THE LIST
John O’Hara
Elizabeth Appleton
3 157 WEEKS ON THE LIST
Taylor Caldwell
Testimony Of Two Men
4 136 WEEKS ON THE LIST
Irving Wallace
The Man
5 135 WEEKS ON THE LIST
Leon Uris
Topaz
1970s
1 172 WEEKS ON THE LIST
Richard Bach
Illusions
2 125 WEEKS ON THE LIST
Robert Ludlum
The Matarese Circle
3 123 WEEKS ON THE LIST
Herman Wouk
The Winds Of War
4 119 WEEKS ON THE LIST
Agatha Christie
Curtain
5 119 WEEKS ON THE LIST
Frederick Forsyth
The Odessa File
1980s
1 336 WEEKS ON THE LIST
Stephen King
Firestarter
2 271 WEEKS ON THE LIST
Danielle Steel
Changes
3 205 WEEKS ON THE LIST
James A. Michener
The Covenant
4 176 WEEKS ON THE LIST
Tom Clancy
Red Storm Rising
5 170 WEEKS ON THE LIST
Robert Ludlum
The Parsifal Mosaic
1990s
1 311 WEEKS ON THE LIST
Danielle Steel
The Gift
2 307 WEEKS ON THE LIST
John Grisham
The Pelican Brief
3 244 WEEKS ON THE LIST
Stephen King
The Stand
4 212 WEEKS ON THE LIST
Robert Waller
The Bridges Of Madison County
5 192 WEEKS ON THE LIST
Mary Higgins Clark
Loves Music, Loves To Dance
2000s
1 232 WEEKS ON THE LIST
John Grisham
Skipping Christmas
2 218 WEEKS ON THE LIST
Dan Brown
The Da Vinci Code
3 200 WEEKS ON THE LIST
Danielle Steel
The House On Hope Street
4 178 WEEKS ON THE LIST
James Patterson
Cross
5 176 WEEKS ON THE LIST
Nicholas Sparks
A Bend In The Road
2010s
1 216 WEEKS ON THE LIST
John Grisham
Sycamore Row
2 207 WEEKS ON THE LIST
David Baldacci
The Escape
3 157 WEEKS ON THE LIST
Danielle Steel
The Mistress
4 157 WEEKS ON THE LIST
Stephen King
11/22/63
5 132 WEEKS ON THE LIST
Anthony Doerr
All The Light We Cannot See
{ggplot2} Original: @tanya_shapiro | {gt} recreation: @rappa753

5.3 LaTeX formulas

Let’s do one more little case study. This one does not require any custom styling. In the absence of support for formulas with MathJax, this is a workaround of incorporating formulas in your tables. It probably won’t work on exports to PDF but for HTML outputs it should do.

The trick we’re going to use is as follows.

  • Pass LaTeX formulas to tex2image() from {exams}. This will transform your formula into an svg image and save it to a file.

  • Read that file and change the colors to whatever you like via text replacement using str_replace_all(). By default all elements are black.

exams::tex2image(
  '$\\overline{X_n} = \\sum\\limits_{k = 1}^{n} x_k $', 
  format = 'svg', 
  dir = here::here(), 
  name = 'formula'
)
svg_formula_black <- read_lines('formula.svg') |> 
  str_flatten() 
  
svg_formula_white <- svg_formula_black |> 
  # Overline color uses stroke, rest uses fill
  str_replace_all('stroke:rgb\\(0%,0%,0%\\)', 'stroke:#FFFFFF') |> 
  str_replace_all('fill:rgb\\(0%,0%,0%\\)', 'fill:#FFFFFF')


tibble(char = svg_formula_black, char2 = 'bla') |> 
  gt() |> 
  opt_stylize(style = 3) |> 
  tab_spanner(
    label = md(svg_formula_white),
    columns = 1:2
  ) |> 
  fmt_markdown(columns = 'char') |> 
  tab_header(title = 'This is a table with formulas as svgs')
This is a table with formulas as svgs
char char2
bla

Now let’s use a second formula in the table. The idea is basically the same. But you have to be careful for one very small reason.

The svg code for the formula images that we get from tex2image() always contains IDs that start with glyph. But all IDs need to be unique. Hence, the second svg code that we generate with tex2image() cannot use glyph for its IDs. Text replacement solves this issue.

exams::tex2image(
  '$\\int_0^\\infty f(x) dx$', 
  format = 'svg', 
  dir = here::here(), 
  name = 'second_formula'
)

svg_formula_black_integral <- readLines('formula2.svg') |> 
  str_flatten() |> 
  str_replace_all('glyph', 'some_other_id')

tibble(char = svg_formula_black, char2 = svg_formula_black_integral) |> 
  gt() |> 
  opt_stylize(style = 3) |> 
  tab_spanner(
    label = md(svg_formula_white),
    columns = 1:2
  ) |> 
  fmt_markdown(columns = c('char', 'char2')) |>
  tab_header(title = 'This is a table with formulas as svgs')
This is a table with formulas as svgs
char char2

5.4 Summary

Alright, alright, alright. What a ride.1 I hope this chapter showed you how everything we’ve learned in this book can be put together to create a range of cool tables.

You probably want to share your tables with the world. Sharing them in Quarto documents can be one way to do that. But there’s one thing you have to watch out for. Next stop: Quarto.


  1. Maybe I’m just a little bit dramatic.↩︎